Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584941

RESUMO

Soybean milk is a rich plant-based source of protein, and phenolic compounds. This study compared the nutritional value of soybean milk, flour, soy protein isolate (SPI) and evaluated the impact of prepared vitamin E/calcium salt/soy protein isolate nanoparticles (ECSPI-NPs) on fortification of developed soybean milk formulations. Results indicated that soybean flour protein content was 40.50 g/100 g, that fulfills 81% of the daily requirement (DV%), the unsaturated fatty acids (USFs), oleic and linoleic content was 21.98 and 56.7%, respectively, of total fatty acids content. In soybean milk, essential amino acids, threonine, leucine, lysine achieved 92.70, 90.81, 77.42% of amino acid scores (AAS) requirement values respectively. Ferulic acid was the main phenolic compound in soybean flour, milk and SPI (508.74, 13.28, 491.78 µg/g). Due to the moisture content of soybean milk (88.50%) against (7.10%) in soybean flour, the latest showed higher nutrients concentrations. The prepared calcium (20 mM/10 g SPI) and vitamin E (100 mg/g SPI) nanoparticles (ECSPI-NPs) exhibited that they were effectively synthesized under transmission electron microscope (TEM), stability in the zeta sizer analysis and safety up to IC50 value (202 ug/mL) on vero cell line. ECSPI-NPs fortification (NECM) enhanced significantly phenolic content (149.49 mg/mL), taste (6.10), texture (6.70) and consumer overall acceptance (6.54). Obtained results encourage the application of the prepared ECSPI-NPs for further functional foods applications.


Assuntos
Soja , Proteínas de Soja , Cálcio da Dieta/análise , Ácidos Graxos/análise , Leite/química , Proteínas de Soja/análise
2.
Front Nutr ; 9: 929977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845781

RESUMO

Plant-derived phenolic compounds have numerous biological effects, including antioxidant, anti-inflammatory, and neuroprotective effects. However, their application is limited because they are degraded under environmental conditions. The aim of this study was to microencapsulate plant phenolic extracts using a complex coacervation method to mitigate this problem. Red beet (RB), broccoli (BR), and spinach leaf (SL) phenolic extracts were encapsulated by complex coacervation. The characteristics of complex coacervates [zeta potential, encapsulation efficiency (EE), FTIR, and morphology] were evaluated. The RB, BR, and SL complex coacervates were incorporated into an ultrafiltered (UF) cheese system. The chemical properties, pH, texture profile, microstructure, and sensory properties of UF cheese with coacervates were determined. In total, 54 male Sprague-Dawley rats were used, among which 48 rats were administered an oral dose of AlCl3 (100 mg/kg body weight/d). Nutritional and biochemical parameters, including malondialdehyde, superoxide dismutase, catalase, reduced glutathione, nitric oxide, acetylcholinesterase, butyrylcholinesterase, dopamine, 5-hydroxytryptamine, brain-derived neurotrophic factor, and glial fibrillary acidic protein, were assessed. The RB, BR, and SL phenolic extracts were successfully encapsulated. The RB, BR, and SL complex coacervates had no impact on the chemical composition of UF cheese. The structure of the RB, BR, and SL complex coacervates in UF cheese was the most stable. The hardness of UF cheese was progressively enhanced by using the RB, BR, and SL complex coacervates. The sensory characteristics of the UF cheese samples achieved good scores and were viable for inclusion in food systems. Additionally, these microcapsules improved metabolic strategies and neurobehavioral systems and enhanced the protein biosynthesis of rat brains. Both forms failed to induce any severe side effects in any experimental group. It can be concluded that the microencapsulation of plant phenolic extracts using a complex coacervation technique protected rats against AlCl3-induced neuroinflammation. This finding might be of interest to food producers and researchers aiming to deliver natural bioactive compounds in the most acceptable manner (i.e., food).

3.
Front Nutr ; 8: 654624, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898503

RESUMO

Iron deficiency anemia (IDA) is a major health concern in developing countries, and these see an increased incidence in pregnant women and children in particular. The contribution of dairy products as natural products in drug delivery approaches is inspiring. This study aimed to analyze the application of iron (Fe) and folic acid (FA) bovine serum albumin-nanoparticles (BSA-NPs) as anti-anemic pharmacological agents that fortify stirred functional yogurt (SFY), comparing these with a plain control and SFY fortified with Fe and FA in free forms. The physicochemical, cytotoxicity, microbiological, viscosity, oxidative interactions, microstructural, sensorial analyses, and bioavailability properties of IDA-induced Albino rats were examined. The Transmission Electron Microscope (TEM), Zetasizer, and Scan Electron Microscope (SEM) were applied. Nanocapsule-fortified SFY showed an enhanced apparent viscosity, water-holding capacity, microstructure, least lipid oxidation, and overall sensorial acceptability. Feed that included Fe + FA nanocapsule-fortified SFY (G6) succeeded in restoring hemoglobin (16.53 gdL-1), iron (109.25 µgdL-1), ferritin (33.25 µgdL-1), and total protein (8.6 gdL-1) at the end of the 4-week feeding period, with significant competition revealed in calcium and zinc absorbance. Nanocapsule-fortified SFY showed no adverse effects or architectural alterations in the liver, kidney, or spleen, as indicated by biochemical and histological examinations. Bovine serum albumin-nanoparticles (BSA-NPs) of iron (Fe) and folic acid (FA) can be recommended as anti-anemia supplements in different functional food applications.

4.
Acta Sci Pol Technol Aliment ; 18(1): 53-63, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30927752

RESUMO

BACKGROUND: The aim of this study was to develop nutritious fermented milk products from camel’s milk fortified with kiwi fruit and avocado puree, and fermented using probiotic strains. METHODS: Stirred yoghurt made from camel’s milk, supplemented with avocado and kiwi fruit puree as natural additives at different levels (2, 4 and 6%) and fermented with a mixture of yoghurt culture and probiotic Lb. acidophilus and B. lactis. The stirred yoghurt was chemically analyzed, and the microbial count, antioxidant activity and total phenolic content were determined. The stirred yoghurt from different treatments was assessed for viscosity and sensory properties. RESULTS: The highest viable counts of Lb. acidophilus and B. lactis were enumerated in yoghurts fortified with 6% avocado, whereas the control had significantly lower counts. The radical scavenging activity (RSA) and the total phenol content (TPC) decreased for the control of the stirred camel’s milk yoghurt after 21 days of storage, whereas the samples fortified with kiwi or avocado puree retained high RSA and TPC content throughout the storage period compared to the control. CONCLUSIONS: Addition of 4% avocado or 6% kiwi pastes to fermented camel’s milk produces a higher quality and acceptability of camel’s milk.


Assuntos
Actinidia , Camelus , Produtos Fermentados do Leite/análise , Frutas/química , Leite/química , Persea , Animais , Antioxidantes/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Fermentação , Análise de Alimentos , Microbiologia de Alimentos , Armazenamento de Alimentos , Alimentos Fortificados , Concentração de Íons de Hidrogênio , Probióticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...